Towards the Specification and Verification of Legal
Contracts™

Alireza Parvizimosaed
School of Electrical Engineering and Computer Science
University of Ottawa
Ottawa, Canada
aparv007 @uottawa.ca, https://scholar.google.com/citations?user=m18pXpkAAAA]J

Abstract—A contract is a legally binding agreement that
expresses high-level requirements of parties in terms of obli-
gations, powers and constraints. Parties’ actions influence the
status of a contract and shall comply with its clauses. Manual
contract monitoring is very laborious in real markets, such as
transactive energy, where plenty of complex contracts are run-
ning concurrently. Furthermore, liability, right and performance
transition through run-time operations such as subcontracting,
assignment and substitution complicate contract interpretation.
Automation is needed to ensure that contracts respect desirable
properties and to support monitoring of compliance and handling
of violations. In this thesis research, I propose an innovative
ontology that defines fundamental contractual notions (such as
the ones mentioned above) and their relationships, on which
is built a specification language, called Symboleo, that provides
syntax and axiomatic semantics of contracts via first-order logic.
Symboleo enables the development of advanced automation tools
such as a compliance checker that monitors contracts at run-
time, and a model checking verification method that analyzes
liveness and safety properties of contracts. This paper reports on
the problem domain, research method, current status, expected
contributions, and main foreseen challenges.

Index Terms—Legal Contract, Specification Language, Model
Checking, Smart Contract, Ontology.

I. INTRODUCTION AND MOTIVATION

A legal contract is an enforceable bond that regulates acts
of participants in a business such as trading. Contracts are ex-
pressed in natural language and determine legal requirements
(i.e., obligations and powers) of parties. For example, a seller
promises to deliver an ordered good to a buyer within three
days. The lifecycle of a contract spans a wide spectrum of
activities, from formation to drafting to performance. Offers,
acceptance and consideration are some of the main elements
of contract formation. An offer represents the intention of
a party for being in an agreement for exchanging at least
two assets as considerations (e.g., a product and money),
and a counterparty’s acceptance completes the negotiation
and legally binds the parties to a drafted contract. Contract
performance starts as soon as an offer is accepted or awaits for
contract’s start time arrival. A contract’s state, obligations and
powers all change during contract performance, which compli-
cates manual compliance checking. For example, in Ontario’s

Partially funded by an NSERC Strategic Partnership Grant titled Middle-
ware Framework and Programming Infrastructure for IoT Services and by
SSHRC’s Partnership Grant Autonomy Through Cyberjustice Technologies.

energy sector, Independent Electricity System Operator (IESO)
forms more than 30,000 contracts per quarter, which must be
monitored at five minutes interval [1].

In large scale projects (e.g., in construction), obligations
are also subcontracted to third parties at multiple levels in
order to speed up project progress and reduce costs. However,
sequential subcontracting may sacrifice the quality of work and
general regulations [2]. Contract assighment and substitution
are two other legal operations whereby rights, liability or
performance are transferred to a new party at run-time. These
operations again make contract analysis more difficult owing
to the mobility of liability, rights and performance.

Smart contracts, proposed by Szabo [3] over two decades
ago, represent an approach aiming to overcome the afore-
mentioned issues. Smart contracts are software systems that
monitor the execution of a legal contract to ensure compliance.
The Requirements Engineering community as contributed
many guidelines into how to extract system requirements from
general laws and regulations [4], but less attention was paid
to contracts, especially in a context where smart contracts
become software programs themselves. It is important to
note that smart contracts are independent from blockchains
(e.g., they can run on conventional platforms and databases),
although many recent implementation approaches take advan-
tage of blockchain technology [5].

In this thesis research, I propose Symboleo as a logical
specification language for smart contracts that supports early
verification (through model checking of properties, at design
time) as well as run-time compliance checking. The research
questions of interest are:

RQ1: What formal concepts should a specification lan-
guage support for legal contracts?

RQ2: How can contracts specified with that language be
verified against safety and liveness properties at design
time?

RQ3: How can contracts specified with that language be
used to check compliance at run-time, while supporting
appropriate reactions to detected violations?

This research is conducted in four steps. First, for RQI, I
survey many textual contracts from different business areas
(including supply chain, energy, construction, and software
development) to discover fundamental concepts and their
internal relations, and finally produce a contract ontology.

This ontology is an extension of the Legal Unified Foun-
dational Ontology (UFO-L) [6]. Second, again for RQI, I
propose a formal specification language, namely Symboleo,
that adopts propositional and first-order logic to formally
describe the syntax and axiomatic semantics of smart contracts
and their requirements. Events, time points, and time intervals
are fundamental elements of Symboleo used to streamline
reasoning about events and time. In the third step for RQ3, a
compliance checker tool applies acceptance tests to domain-
independent axioms (i.e., Symboleo’s semantics) to verify their
correctness property. This tool will be extended to support run-
time compliance checking based on streams of events. Finally,
for RQ2, a mapping to an SMT solver is being developed in
order to verify safety and liveness properties of contracts. I
iterate through all steps based on new types of contracts being
considered, specified, and checked, as suggested in the Design
Science Research (DSR) methodology, and in turn refine the
ontology, Symboleo, and its verification/compliance methods.

The rest of this paper is organized as follows. Section II dis-
cusses related work, including legal ontologies, specification
languages and verification methods. The research approach
is summarized in section III. Section IV presents a contract
ontology together with the syntax and semantics of Sym-
boleo. Section V presents our evaluation strategies, whereas
Section VI briefly explains foreseen technical challenges.
Expected contributions are presented in section VII, and then
section VIII concludes and highlights future work.

II. RELATED WORK

In the past decade, the International Workshop on Require-
ments Engineering and Law (RELAW) has explored several
relationships between requirements and contracts [7]-[10],
including compliance and subcontracting aspects. However,
none has considered smart contracts nor the level of automa-
tion they enable.

UFO-L is a comprehensive legal ontology, grounded in
UFO, that models legal relations (i.e., correlation and oppo-
site) among legal positions (i.e., Hohfeldian legal concepts).
However, contractual notions such as asset and even con-
tract have not been addressed in UFO-L [11]. Kaliban et
al. [12] introduced a multi-tier ontology of contracts with
three levels of abstractions where the highest determines
common entities of prevalent types of contracts, the middle
specifically investigates a business contract, and the lowest
provides detailed templates of a particular contract type. The
ontology is designed to monitor execution of contracts through
business workflows, but ignores time and detailed obligations
that are important prerequisites for legal reasoning. Similarly,
Karlapalem et al. [13] conceptually model contracts through
an entity-relation data model, and include business process
aspects of a contract rather than legal concepts. Goodchild et
al. [14] also outline a preliminary specification of business-to-
business contracts in which no legal notion is derived from
clauses, and hence legal reasoning over their XML-based
language is limited to clauses, not legal concepts and relations.

From a contract-as-process perspective, a contract encom-
passes interrelated obligations and rights whose performance
shifts the contract to a new situation through time [15], [16].
Theoretically, such approaches enable contract monitoring,
but practically many unforeseen states are generated during a
contract’s lifecycle, which can freeze monitoring and reason-
ing processes. On the other hand, contractual terms are not
adequately detailed to explore sequences of dependent terms.

Business processes capture social interactions among partic-
ipants who are responsible toward each other. Social commit-
ments, as ethical obligations tied to society, are conceptually
close to legal obligations. However, the legal norms, flexibility
that power provides, and contract dependency on legal norms
differentiate legal contracts. Chesani et al. [17] represent the
lifecycle of a commitment as a state machine, and formally
specify semantics of the machine transitions through the Event
Calculus. In addition to commitment, Dalpiaz et al. [18]
take into account business processes, and so integrate social
commitments, participants and social constraints into a social
interaction protocol. Apart from the specification, an algorithm
checks compliance of events that may violate the protocol.
Other approaches [19]-[22] either create a new commitment
for a third party in place of the older one, or keep the older
one to specify commitment delegation.

In addition, there are several efforts targeting the formaliza-
tion of legal concepts. Prisacariu and Schneider [23] propose
an extension of the p-calculus to specify intuitive properties of
a contract based on deontic notions of obligation, permission
and prohibition. He et al. [24] suggest a metamodel as the
basis for its specification language (SPESC), which has a
natural-language-like syntax and an informal description of
its semantics. FCL [25] is a propositional and deontic-based
logic developed to reason about contrary-to-duty obligations,
which are less generic than the concept of power, the latter
enabling the creation, suspension, or elimination of obligations
upon violations or other situations.

III. RESEARCH METHOD

The research method is inspired from Hevner’s Design
Science Research (DSR) [26]. DSR is an artifact-oriented
methodology that iteratively employs methods and techniques
to develop target artifacts and eventually improves human and
organizational capabilities.

This thesis research will result in three main artifacts, one
for each research question: the Symboleo language (including
its underlying ontology and axioms, and an editor), a design-
time verification tool for model-checking liveness/safety prop-
erties, and a run-time compliance checking tool. To develop
and validate these artifacts, I iterate through three steps:
1) interpret sample contracts to explore new concepts, 2) refine
the ontology, Symboleo, and verification methods and tools,
and 3) evaluate the artifacts through case studies, developed
in collaboration with industrial partners from different areas.

So far, I have studied multiple types of contracts, and
developed several iterations of the ontology and the Symboleo
language. Moreover, I implemented an event-oriented reasoner

tool that enables the testing of Symboleo specifications (e.g.,
for supply chain contracts) as well as for checking the cor-
rectness of the language itself. For the communication of
the results, two conference papers on Symboleo are currently
under review.

IV. PROPOSED SOLUTIONS
A. Ontology

The contract ontology is drawn from three sources:

1) Legal theories claim that the basis of a contract contains
distinct legal concepts. For instance, Hohfeld’s theory
introduces eight correlative or opposite concepts [27].
Furthermore, Alexy classified these concepts as rules and
principles and used Hohfeldian relations to expand his
theory’s legal relation aspect [28]. In this research, I
summarize Hohfeldian norms to obligations and powers
where an obligation is that which a party ought to do, and
a power entitles a party to alter the state of obligations,
powers or contracts. For instance, “a supplier is obligated
to deliver two tons of beef to a buyer in return of $1000”
is a conditional obligation that enforces the supplier to
deliver in case it gets paid. "The supplier is entitled to
terminate a contract if the payment is more than 5 days
late” is a conditional power of the supplier power whose
exertion terminates the sales contract.

2) A Legal Core Ontology (LCO) is a specialization of
an upper-level ontology that represents imperative legal
concepts. UFO-L [11] is a LCO based on Alexy’s theory
and is grounded in the Unified Foundational Ontol-
ogy (UFO). This domain-independent ontological model
reuses concepts of law, but is not specific to contracts. In
turn, a contract is a particular aspect of law categorized in
contract law. A contract is a composition of obligations
and powers whose relations differ from UFO-L’s. For
instance, UFO-L solely converts a power to correlative or
opposite concepts by means of “relators” whereas a power
might influence other obligations, powers or contracts. At
least two parties are bound to an agreement, and may be
assigned to roles. Parties exchange at least two assets
through a contract. Although UFO-L covers concepts
such as party, asset, role, power and obligation norms,
their relations are altered in a contract context. The
proposed ontology inherits these concepts from UFO-L,
but adds new concepts and relations.

3) The analysis of sample contracts is another ontology
elicitation technique. My research team and I manually
interpreted 50 contracts and online terms and conditions,
and then annotated and classified legal and logical con-
cepts and relations. This led us to enrich the ontology by
adding important concepts such as event, time point and
time interval, as well as relations such as subcontracting.

Fig. 1 depicts the proposed ontology. All white concepts,
except contract, are specializations of UFO-L. Briefly, a sit-
uation is a state of affairs that is true or false at a given
moment. Events may bring about a situation. A legal position,

subcontracting .
time

I Point(Time) l

start end
post-state

Situation -
tim

subcontract Event

contractOf

pre-state| 1 1

parent-
contract) |

| Interval(Time)

terminated

-quantit
/suspended d Y

- quality

. | legalPositions

A\ 0)
Legal
Position [0

0." 1

antecedent

termination
/suspension

consequent

0."
change state

trigger

Obligation

terminator
/suspender

-surviving: Boolean

Fig. 1. Proposed contract ontology

either power or obligation, is defined between a creditor and
a debtor to bring about a situation (i.e., the consequent) if
a precondition (i.e., the antecedent) is true. Once a creditor
exerts a power, the state of a legal position or contract is
modified, e.g., an obligation is created or discharged, or a
contract is terminated.

At least one (liable) party is responsible to fulfill an
obligation towards other parties (rightHolder). An obligation
performer is a party who is permitted to fulfill the obligation.
Typically, debtors are liable and performer, while creditors
are right holders of obligations. However, run-time operations
(e.g., subcontracting, assignment and substitution) transfer or
share these positions to/with parties. Nobody is liable to a
power, while a creditor has the right to exert a power.

B. Finite State Machines

Fig. 2 represents the states of contracts and legal positions
in three Finite State Machines (FSMs) that enable compliance
and property checking.

An obligation is an entity expressing requirements of an
obligee (i.e., creditor). An obligation is created in various
ways. Generally, contract activation triggers some obligations,
but suspensive obligations take place solely if their precon-
ditions are satisfied. A created obligation stays inactive until
the creditor takes proper actions. For example, the previous
delivery obligation would be in effect if and only if the buyer
pays $1000 to the supplier. In some cases, the creditor’s action
is not required, e.g., “the supplier shall always keep beefs
frozen”. An obligation may expire if its creditor acts too late.
A debtor may fulfill or violate its obligation. A power may also
create, discharge, suspend, resume or terminate an obligation.

The creation, activation, suspension, resumption and ex-
piration of powers are similar to obligations’. The exertion
of a power may terminate, suspend or resume contracts and
obligations. Surviving obligations, however, keep their position
beyond the contract termination, e.g., “participants shall not
disclose sales information until six months after the agreement
termination”. A contract terminates successfully when powers
and (non-surviving) obligations are no longer active.

Contract N
| Active |
Revoked party Resumed
[Unassign | ‘ InEffect | ‘Suspensiou]
Assigned party / .
Activated Fulfilled active Terminated
obligations
Form Successful Unsuccessful
or Termination Termination
Contract.InEffect
Obligation -
Active
. Discharged Fulfilled
Discharge Fulfillment
InEffect

Expired Violated

Violation

Suspended

Resumed

Unsuccessful
Termination

Terminated

Suspension

Power

Unsuccessful Termi
Terminati | Expired

Expired

Triggered

Active

Resumed

d InEffect | Suspension

Activated

Triggered

Successful
Termination

Fig. 2. FSM of the contract, obligation and power concepts

C. Symboleo: a specification language

Symboleo is a specification language of smart contracts
that is developed based on the proposed ontology and state
machines. The language adopts a first-order and time-based
logic for reasoning about time points, time intervals and
events. This language is also close to event calculus thanks
to common time point, event and proposition concepts.

— Syntax. Symboleo’s syntax is briefly described in Ta-
ble I, which shows a contract’s Domain concepts, including but
not limited to events and assets, with their attributes. These are
defined outside of a contract, but are instantiated in a contract’s
Declarations. The signature of a contract include a name
and multiple input parameters that are valued individually at
instantiation time. Pre- and post-conditions might restrict the
beginning and successful ending of a contract. For example, a
sales contract is valid if the good’s owner is the seller. In the
table, a proposition is a logical composition of events, states
of obligations/powers/contract and shorthand predicates. For
instance, “(event) happensBefore (time point)” denotes that
the event happens before a certain time point. An extensible
library of shorthands is being developed for the language.

The contract body contains a collection of obligations and
powers classes. The signatures of an obligation is “Trigger
— Name : O(debtor, creditor, antecedent, consequent)” and
that of a power is “Trigger — Name : P(creditor, debtor,
antecedent, consequent)”. Trigger is a situation whose satis-
faction instantiates the obligation (O) or power (P). Situations
are expressed by propositions. The creditor and debtor are
two roles. An antecedent determines the precondition of an
obligation or power. An obligation’s debtor is obliged to bring
about the consequent situation while a power creditor has
the right to exert that power. For example, in O; : O(seller,
buyer, true, happensBefore(delivered,delivered.delDueD)), 0,

is an instance of the delivery obligation whereby the buyer
unconditionally shall deliver the ordered good before the
due date. The constraint part contains safety and liveness
properties that respectively ensure bad things never happen and
contracts eventually terminate. For instance, the proposition
“NOT(isEqual(buyer, seller))” prohibits that the buyer and
seller roles are assigned to the same parties.

TABLE I
EBNF SYNTAX OF SYMBOLEO

(contractSpec) ::= (domainSpec) (contract)
(domainSpec) ::= Domain (name) (({dConcept) ’;’)+ endDomain
(dConcept) ::= (name) isA ((name))" (name) with ((att) *;)" (att)
(contract) ::= Contract (name) (’ ((param)’,)” ((param)’;’) (param))’
[Declarations ((declaration)’;")"]
[Preconditions ((proposition)’;”) j
[Postconditions ((proposition)’;")"]
Obligations ((obligation)’;’)" ({obligation)’;’)
[SurvivingObls ((obligation)’;")"]
[Powers ((power)’;’)"]
[Constraints (({proposition)’;")"]
endContract
(att) ::= (pair)
(param) ::= (pair)
(declaration) ::= (pair) with ((name)”:="(name)’,)" ((name)’:="(name))

(pair) ::= (name) ’:’ (name)

(obligation) ::= (name)’:” [(proposition) ’—’] O’ ’(’(name)’, (name)
(proposition) °, (proposition) °)’

(power) ::= (name) ;" [(proposition) *—’]
P’ ’(C (name) ’, (name) ’,; (proposition) ’, (proposition))’

— Semantics. Symboleo’s semantics are specified using
primitive predicates. Symboleo adopts five innovative prim-
itive predicates given in Table II in addition to event cal-
culus predicates [29]. This research mainly focuses on the
monitoring aspects of contracts. At the moment, 27 axioms
are proposed to specify explicit and implicit side effects of
FSM transitions. For example, Axiom 1 formulates successful
termination of a contract. holdsAt(s,t) checks if situation s
is held at time point ¢ while fulfillment, InEffect, active and
successfulTermination indicate states of obligations and of the
contract. The remaining axioms are available in [30].

TABLE I
PRIMITIVE PREDICATES OF SYMBOLAIO

e within s
occurs(s, T)

situation s holds when event e happens
situation s holds during the whole interval 7,
not just in any of its subintervals

event e brings about situation s

event e terminates situation s

event e happens at time instance ¢

initiates(e, s)
terminates(e, s)
happens(e, t)

Axiom 1. Contract ¢ terminates when all obligations and pow-
ers of the contract are inactive except surviving obligations.

happens(e, t) A initiates(e, fulfillment(o)) A
—(holdsAt(fulfiliment(o),t)) A (e within InEffect(c)) A
(Vo' /o.contr.obl | surviving(o') V —(e within active(o’)))A
(Vp'/o.contr.power |—(e within active(p)))

— initiates(e, successful Termination(c))A

terminates(e, InEffect(c))
M

In the second step, we investigated informal semantics of
substitution, subcontracting and assignment.
— Subcontracting. A liable party partially or totally dele-
gates performance of obligations to a third party through a
subcontract. In specific situations, when stated in the contract,
counterparties’ consent is a prerequisite to any delegation.
In all cases, the subcontractor takes over the performance of
obligations while the original partner still preserves liability.
— Substitution. A substitution occurs if a party takes the
place of another one in a contract and undertakes liability
of obligations as well as their performance while the origi-
nal party is no longer committed. Similar to subcontracting,
consent of counterparties may be required; however, no new
contract is created.
— Right assignment. This operation transfers the right of a
party to someone else. For example, if a seller is entitled to
get paid, the seller can transfer the right of payment to another

party.

V. EVALUATION STRATEGY

Symboleo’s semantics and verification methods will be
evaluated in three ways:

« Real contracts from existing industrial partners in Canada
and France will be specified with Symboleo to assess
the language’s completeness and adequacy for the supply
chain, energy trading and telecommunication areas. In
this way, RQI will be partially answered. So far, con-
tracts for the sale of goods and for freight have been
specified, while energy trading contracts and service level
agreements are under development.

o A compliance checking tool is being developed. The
short-term goal is to exercise and assess the correctness
of the language’s axioms, while enabling the execution
of acceptance tests on Symboleo contracts, partially an-
swering RQ3. A Prolog prototype was implemented (in
Prolog), and the sales of good and freight contracts
have been used as input. The tool executes sequences
of events (tests) and checks whether expected situations
are met. Tests will be developed in collaboration with
our industrial partners. The long-term goal is to connect
this prototype to an external source of streamed events
(e.g., coming from IoT devices and other sources, via a
Complex Event Processing engine), enabling the run-time
monitoring of contracts.

o Another tool will be developed for the verification of
safety and liveness properties at design time (RQ2). These
properties which are encoded as temporal logic formulas
represent the behaviour of contracts over time. For ex-
ample, powers never activate contradictory obligations at
a moment. This tool will transform a Symboleo contract
specification into the input language of an existing SMT
solver (Microsoft Z3 or others) to model-check proper-
ties. The same case studies will be used, with properties
developed in collaboration with our partners.

VI. TECHNICAL CHALLENGES

The diversity of legal contracts is a challenge. I will
focus on business contracts, and will not cover contracts in
domains such as marriages or employment. As mentioned,
real (business) contracts are an undeniably useful source of
concepts for the specification language. However, there is no
guarantee that these concepts are sufficient to support other
types of contracts.

Contracts are often subject to existing laws and regulations,
which are specified outside individual contracts. This informa-
tion (e.g., jurisdiction-related obligations and powers) likely
needs to be encoded as well and imported by contracts.

Moreover, neither contract law nor contractual clauses
demonstrate the side effects of a contract suspension or
resumption. For example, a contract may entitle a party to
suspend a contract in case of an obligation violation. In such
situation, where the party exerts this suspension power, which
obligations of which party get suspended? What happens
to time-dependent terms after resumption? Who is liable
for assets such as perishable goods during suspension? We
suspect our formal contract specifications to be required to
be more detailed than conventional contracts. Yet, flexibility
in contractual obligations is at times convenient (especially
in this COVID-19 era). These tensions between formality,
completeness and flexibility will need to be studied.

The selection of an appropriate SMT environment for RQ3
remains a challenge, assuming that one exists that will allow
a mapping from Symboleo to its input language. One option
might be to modify an open-source SMT solver to support
missing concepts or algorithms, if needed.

VII. EXPECTED CONTRIBUTIONS

As explained before, the expected artefacts produced in the
thesis will be the Symboleo language, with its ontology, FSMs
and axioms (RQI), with an SMT-based model-checking tool
for design-time verification of liveness and safety properties
(RQ2), and a tool for the testing of contracts and for their
monitoring at run time (RQ3).

As the research is driven by DSR, I expect the current
artefacts to evolve substantially as I progress through my
research while considering an increasingly large number of
real-life contracts and properties.

This research will contribute to the formal representation
of requirements in (smart) contracts, with support for their
analysis and monitoring, two activities in dire need of au-
tomation. This research goes beyond existing work by taking
into consideration the concept of power, which enables (among
other things) contracts to manipulate obligations dynamically
and to react to detected violations, by considering time explic-
itly in contract analysis, and by supporting different levels of
subcontracting. These language concepts are essential to make
the specification and monitoring of (smart) contracts practical
and beneficial.

VIII. CONCLUSION

A contract contains legal requirements of parties expressed
in terms of obligations and powers. A power can manipulate
a contract and its obligations at execution time. Due to the
ambiguity of natural language (used in the vast majority of
contracts) and the capabilities of powers and other advanced
concepts, combined to complicated types of subcontracting
relationships, a contract often encompasses inconsistent and
even contradictory clauses, or important gaps. In addition, the
real-time compliance checking of smart contracts is now en-
abled by the growth of IoT and blockchain-based technologies.

The Symboleo specification language is being proposed in
this thesis to formally specify legal contracts and their re-
quirements, find property violations, and automatically check
compliance.

As a preliminary step, my colleagues and I reviewed 50
valid contracts and designed a contract ontology based on
UFO-L that is compatible with Hohfeldian’s notions. In addi-
tion, FSMs were developed to model the states of obligations,
powers and contracts. I also defined the syntax and axiomatic
semantics of Symboleo according to the ontology and state
machines. I also implemented a compliance checking tool and
conducted some acceptance tests on several realistic contracts
to evaluate the correctness of Symboleo’s axioms.

The next step will be for me to focus on RQ2 and develop
model-checking capabilities for Symboleo. I will then iterate
over the three research questions by modeling and checking
and increasing number of real contracts and properties from
different domains.

ACKNOWLEDGMENT

I would like to express my deepest appreciation to Prof.
John Mylopoulos and Prof. Daniel Amyot, my co-supervisors,
for their endless support and help. I am also thankful to Prof.
Luigi Logrippo and Sepehr Sharifi for collaboration on this
research.

REFERENCES

[1] IESO. (2020) A progress report on contracted electricity supply:
Q4-2019. [Online]. Available: https://bit.ly/2RrEC8D

[2] V. W. Tam, L. Shen, and J. S. Kong, “Impacts of multi-layer chain sub-
contracting on project management performance,” International Journal
of Project Management, vol. 29, no. 1, pp. 108-116, 2011.

[3] N. Szabo, “Formalizing and securing relationships on public networks,”
First Monday, vol. 2, no. 9, 1997.

[4] P. N. Otto and A. I. Anton, “Addressing legal requirements in require-
ments engineering,” in /5th IEEE International Requirements Engineer-
ing Conference (RE 2007). IEEE CS, 2007, pp. 5-14.

[5] D. Macrinici, C. Cartofeanu, and S. Gao, “Smart contract applications
within blockchain technology: A systematic mapping study,” Telematics
and Informatics, vol. 35, no. 8, pp. 2337-2354, 2018.

[6] C. Griffo, J. P. A. Almeida, and G. Guizzardi, “Towards a legal core
ontology based on Alexy’s theory of fundamental rights,” in Multilingual
Workshop on Artificial Intelligence and Law, ICAIL, 2015.

[7]1 B. Berenbach, Ren-Yi Lo, and B. Sherman, “Contract-based require-
ments engineering,” in 2010 Third International Workshop on Require-
ments Engineering and Law (RELAW). IEEE CS, 2010, pp. 27-33.

[8] R. Nekvi, R. Ferrari, B. Berenbach, and N. H. Madhavji, “Towards a
compliance meta-model for system requirements in contractual projects,”
in 2011 Fourth International Workshop on Requirements Engineering
and Law (RELAW). IEEE CS, 2011, pp. 74-77.

[9]

[10]

(11]

(12]

[13

[t

[14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

(22]

[23]

[24]

[25]

[26]
[27]
[28]
[29]

(30]

B. Westphal, D. Dietsch, S. Feo-Arenis, A. Podelski, L. Pahlow, J. Mors-
bach, B. Sommer, A. Fuchs, and C. Meierhofer, “Towards successful
subcontracting for software in small to medium-sized enterprises,” in
2012 Fifth IEEE International Workshop on Requirements Engineering
and Law (RELAW). IEEE CS, 2012, pp. 42-51.

L. d. S. Barboza, G. A. d. A. C. Filho, and R. A. C. d. Souza,
“Towards legal compliance in it procurement planning in brazil’s federal
public administration,” in 2016 IEEE 24th International Requirements
Engineering Conference Workshops (REW). 1EEE CS, 2016, pp. 229—
238.

C. Griffo, J. P. A. Almeida, and G. Guizzardi, “Conceptual modeling of
legal relations,” in International Conference on Conceptual Modeling.
Springer, 2018, pp. 169-183.

V. Kabilan, P. Johannesson, and D. M. Rugaimukamu, “Business con-
tract obligation monitoring through use of multi tier contract ontology,”
in OTM Confederated International Conferences” On the Move to
Meaningful Internet Systems”. Springer, 2003, pp. 690-702.

K. Karlapalem, A. R. Dani, and P. R. Krishna, “A frame work for mod-
eling electronic contracts,” in International Conference on Conceptual
Modeling. Springer, 2001, pp. 193-207.

A. Goodchild, C. Herring, and Z. Milosevic, “Business contracts for
B2B,” in Workshop on Infrastructure for Dynamic Business-to-Business
Service Outsourcing, ISDO, ser. CEUR Workshop Proceedings, vol. 30.
CEUR-WS.org, 2000. [Online]. Available: http://ceur-ws.org/Vol-30/
paper8.pdf

A. Daskalopulu, “Modelling legal contracts as processes,” in Database
and Expert Systems Applications, 2000. 11th Int. Workshop. 1EEE,
2000, pp. 1074-1079.

G. Governatori, F. Idelberger, Z. Milosevic, R. Riveret, G. Sartor, and
X. Xu, “On legal contracts, imperative and declarative smart contracts,
and blockchain systems,” Artificial Intelligence and Law, vol. 26, no. 4,
pp. 377-409, 2018.

F. Chesani, P. Mello, M. Montali, and P. Torroni, “Representing and
monitoring social commitments using the event calculus,” Autonomous
Agents and Multi-Agent Systems, vol. 27, no. 1, pp. 85-130, 2013.

F. Dalpiaz, E. Cardoso, G. Canobbio, P. Giorgini, and J. Mylopoulos,
“Social specifications of business processes with Azzurra,” in 9th In-
ternational Conference on Research Challenges in Information Science
(RCIS). 1IEEE CS, 2015, pp. 7-18.

0. Kafali and P. Torroni, “Social commitment delegation and monitor-
ing,” in Computational Logic in Multi-Agent Systems. Springer, 2011,
pp. 171-189.

——, “Comodo: collaborative monitoring of commitment delegations,”
Expert Systems with Applications, vol. 105, pp. 144-158, 2018.

A. K. Chopra and M. P. Singh, “Multiagent commitment alignment,”
in 8th International Conference on Autonomous Agents and Multiagent
Systems — Volume 2. TFAAMAS, 2009, pp. 937-944.

P. Yolum and M. P. Singh, “Reasoning about commitments in the event
calculus: An approach for specifying and executing protocols,” Annals
of Mathematics and Artificial Intelligence, vol. 42, no. 1-3, pp. 227-253,
2004.

C. Prisacariu and G. Schneider, “A formal language for electronic
contracts,” in International Conference on Formal Methods for Open
Object-Based Distributed Systems. Springer, 2007, pp. 174-189.

X. He, B. Qin, Y. Zhu, X. Chen, and Y. Liu, “SPESC: A specification
language for smart contracts,” in 2018 IEEE 42nd Annual Computer
Software and Applications Conference (COMPSAC), vol. 1. IEEE,
2018, pp. 132-137.

G. Governatori and Z. Milosevic, “A formal analysis of a business
contract language,” International Journal of Cooperative Information
Systems, vol. 15, no. 04, pp. 659-685, 2006.

A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design science in
information systems research,” MIS quarterly, pp. 75-105, 2004.

W. N. Hohfeld, “Some fundamental legal conceptions as applied in
judicial reasoning,” Yale Lj, vol. 23, p. 16, 1913.

R. Alexy, A theory of constitutional rights. Oxford University Press,
USA, 2010.

M. Shanahan, “The event calculus explained,” in Artificial intelligence
today. Springer, 1999, pp. 409-430.

A. Parvizimosaed and S. Sharifi, “Symboleo Compliance Checker,”
May 2020. [Online]. Available: https://doi.org/10.5281/zenodo.3840727

